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Using the scanning method we study by extensive simulations the 0 transition of self-avoiding walks
with nearest-neighbor attractions in the bulk and near a linear wall on a square lattice. Consistent re-
sults for the two models are obtained for the radius of gyration, but not for the end-to-end distance. Our
results for the exponents v and ¥ agree with those derived by Duplantier and Saleur [Phys. Rev. Lett. 59,
539 (1987)] for the 8’ model. However, our results for the crossover exponent ¢ (which constitute upper
bounds for the correct value) are significantly larger than the value of ¢(6’). At the ordinary point our
result for y, is larger (even though not much) than the value suggested by Vanderzande, Stella, and Seno

[Phys. Rev. Lett. 67, 2757 (1991)] for the 6’ model.

PACS number(s): 36.20.Ey, 02.70.—c, 05.70.Jk, 64.60.Kw

The collapse of polymers at the Flory 6 point [1,2] and
their adsorption on a surface are fundamental phenome-
na in polymer physics with a wide range of industrial ap-
plications [3] and biological significance (e.g., protein
folding [4]; protein membrane interactions, etc. [5]).
From the theoretical point of view, a great deal of pro-
gress has been achieved in recent years in two dimensions
(2D), mainly due to the advent of Coulomb-gas tech-
niques [6] and conformal invariance [7]. The 6-point
behavior has been usually modeled by self-avoiding walks
(SAW’s) on a lattice, where an attractive interaction ener-
gy is defined between a pair of nonbonded nearest-
neighbor (NN) monomers [8,9]. Duplantier and Saleur
(DS) [10] have proposed the exact tricritical exponents of
a collapsing polymer in 2D, for a special model of SAW’s
on a hexagonal lattice with randomly forbidden hexa-
gons. However, this model consists, in addition to the
NN attractions, also of a special subset of the next-
nearest-neighbor attractions and therefore, instead of
describing the usual 6 point, it might describe a multicrit-
ical 6’ point [11-13].

The recent numerical results for the 6 point and for tri-
critical trails mostly agree with the DS value v=4% while
the estimates of y are smaller than £, the DS value
[13-21]. On the other hand, the central values for ¢ are
larger than the DS value 2 ~0.428; for the most reliable
Monte Carlo studies they range from 0.48 to 0.60 for
SAW’s [13,16-18] and 0.68-0.80 for trails [19-21],
which suggests that the 6 and 6’ points and trails may be-
long to different universality classes.

Of interest also are the exponents of a collapsing chain
that is anchored to an impenetrable linear surface (the or-
dinary point). For the 6 model, DS have proposed
Y1=v~1.143 and y;;=v~0.571 while the numerical re-
sults, ¥;~0.6 and y;~—0.5 found for both SAW’s
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[16,18,22,23] and trails [21] are dramatically smaller.
This discrepancy has been explained recently by Vander-
zande, Stella, and Seno (VSS) [24] who have shown, that
within the framework of the 6’ model, the DS values for
v1 and y,, are not related to the ordinary point but
to the special one. They have also suggested that
¥1(0")=%~0.571 at the ordinary point which was corro-
borated by exact enumeration study and is compatible
with the above-mentioned numerical data. Thus (ignor-
ing the results for ¢), they have conjectured that the 0
and 6’ points are in the same universality class. We have
recently applied the scanning simulation method to rela-
tively long SAW’s and trails at their special point and
have found results for y; and ¢, that differ significantly
from the VSS values for the 6’ model [25], however, an
exact enumeration study of SAW’s supports all the VSS
values [23]. Thus, the relation between the 6 and the 6’
models is as yet not clear and extensive numerical work is
needed.

The main aim of the present work is to investigate the
ordinary 6 point, in particular y,. Thus, we simulate
with the scanning method significantly longer chains and
larger samples than previously studied. The model is a
single SAW of N steps (bonds) (i.e., N + 1 monomers) that
starts from the origin located on an impenetrable linear
boundary on the square lattice; an attractive energy €
(e <0) is defined between two NN nonbonded monomers.
This model and its bulk version (in which the surface is
removed) are expected to share the same tricritical tem-
perature T,, growth parameter u [see Eq. (3)], and the ex-
ponents v and ¢. Therefore, we also carry out a simula-
tion of the latter model which is much more extensive
than that previously performed by Meirovitch and Lim
(MI) [17].

With the scanning method [26] a SAW is generated

3656 ©1993 The American Physical Society



48 COLLAPSE TRANSITION OF SELF-AVOIDING WALKSON A . ..

step by step by scanning all the possible chain continua-
tions in b future steps; b is called the scanning parameter.
Since not the whole future is scanned, the chain can be
trapped in a cul de sac; in this case it is discarded and a
new chain is started. Therefore, from n, attempted
chains only »n will survive. Also, SAW i is not construct-
ed according to its Boltzmann probability, P2, but with a
biased probability P;(b), which approaches P? as b is in-
creased. The bias can be removed by importance sam-
pling [27] or with a procedure suggested by Schmidt [28].
With the Schmidt procedure, an unbiased sample of
Paccept acCepted SAW’s is extracted from the biased one,
where 7., provides a measure for the efficiency of the
simulation, the larger is b the larger is 7,.... A feature
that facilitates the determination of T, is that results at
many temperatures can be obtained from a single sample
generated at a given temperature. In order to obtain ac-
curate results for the longer chains (up to N =250) we
used scanning parameter b =5 (b =3 was employed by
ML). The importance sampling results for the various
properties were calculated and accumulated for the par-
tial chains of lengths N =10,20, ...,250. The two sam-
ples were generated at the reciprocal temperature
K =—¢/kyT=0.654 (kp is the Boltzmann constant).
For SAW’s in the bulk results were calculated at
K =0.634,0.636, ...,0.672, where n,=130X10° (.e.,
4.5 times larger than the ML sample); however, 7, be-
comes significantly lower as N increases, 5.12X10°
(R pccept /19=0.039) for N =200 at K =0.658. For
SAW’s near a surface, results were calculated at
K =0.628,0.630, . ..,0.676, ny=185%10° and
M pccept (N =200)=3.12X 10° (R accept /1o =0.017).

In order to determine the tricritical temperature, we
rely on the crossover scaling expression of the root-
mean-square radius of gyration { G?)!/2, denoted G (and
the end to-end distance, R ) [29],
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where 7is |(T —T,)/T,|. For small 7, f,(x) behaves as
follows:

X386 o
S+ x)= [const x—0, ’ r>T:,

X126 o Lo @
f-0= (const x—0, T<T, .

Therefore, for T > T,, one would expect the slope of logG
vs logN to be smaller than 3 for small N and to approach
this value asymptotically. For T <T,, this slope de-
creases asymptotically to Dﬂ1=-2‘-. At T, a constant
slope is expected which means G(2N)/G(N)=2" (if
corrections to scaling are ignored). These ratios for
N =10,20, ..., (for simplicity we shall omit the values
of 2N) can be plotted as a function of K where the inter-
section point of the lines defines both K, and v [30]. In
Fig. 1 such a plot is presented for SAW’s in the bulk,
where the results for N =10 and 20 and 30 and for
N >80 were omitted because of strong corrections to
scaling and large statistical errors, respectively. A simi-
lar plot for the ordinary point is shown in Fig. 2 (for
N =40-90). The intersection points define the following
values:

K,(bulk)=0.65840.004 ,
v(bulk)=0.579-+0.005 ,
K,(ord)=0.656+0.004 ,
v(ord)=0.583%0.005 ,

where the errors here and in the rest of the paper are
95% confidence limits [31]. The central value of v(bulk)
is an average over the different results for v obtained at
K,=0.658 (the lines do not meet exactly at a point). We
also calculated the maximal and minimal values of v at

G <N"f (N ), (D K =0.654 and 0.662, respectively, where the error is
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defined as the maximal deviation of these values from v
(bulk). The same applies to the ordinary point. The
present results for K,(bulk) and v are equal to the ML
values (based on b =3), which is an important test for
their reliability [26]; our value of v is slightly larger
(within the error bars) than the DS value 0.571; however,
in view of the relatively low accuracy obtained for v by
other numerical techniques [13,15,24] we consider our re-
sult as a support of the conjecture, v(6)=v(6’). The re-
sult of K,(ord) is only slightly smaller than that of
K, (bulk), where such a deviation is expected to occur for
short chains due to the surface [21,22]; correspondingly,
the value of v(ord) is slightly higher than v(bulk). Notice
that the data for R (unlike those for G) have led to incon-
sistent results, K,(bulk)~0.670 and K,(ord)~0.636,
which demonstrates strong finite-size effects. This
perhaps explains the high value of K, obtained from a
transfer matrix study based on R [15]. We accept the
value of K, (bulk)=0.658 (based on G) as the best estimate
of K, for both models; thus, all the exponents will be es-
timated at this temperature.

Three partition functions Z, are defined: For SAW’s
in the bulk (=0, which will be omitted), for SAW’s that
start from the surface (a=1), and for those that also end
on the surface (a=11). At K, the following behavior is
expected:

Z,~Bpu"N", 3

where the B, are prefactors, p is the growth parameter,
and the y, are critical exponents. In order to calculate u
and ¥, we use the same method as for K, and v. Thus, at
K, Eq. (3) leads to 2Z (2N)/Z ,(N)u¥=2"*. Therefore,
one can calculate the results for 2Z,(2N)/Z ,(N)u™ for
different values of u, where the intersection point of these
lines should define both y, and the correct value of u. In
Figs. 3 and 4 such plots are presented at K,=0.658 for
SAW’s in the bulk (N =40-120) and at the ordinary

point (N =30-110), respectively; the fact that sharp in-
tersection points are obtained for wide ranges of N
demonstrates that corrections to scaling are negligible.
We obtain

y=1.125+0.019, u(bulk)=3.212+0.007 ,
71=0.598+0.015, w(ord)=3.212+0.007 .

The central values of ¥ and p(bulk) are the average
values of results obtained at K,=0.658 from different
graphs of N =40-70, 40-80,...,40-120, 50-80,
50-90,...,50-120, 60-90, 60-100,...,60-120 and
70-100, 70-120. Similar calculations were carried out at
K =0.654 and 0.662 and the maximal deviation from the
central value defines the error. The same analysis has
also been applied to the ordinary point. The above re-
sults for p are equal and they are close to the ML value
3.213(13), but have smaller error bars. Our result for y is
also defined with the smallest error bars obtained thus far
[13-21] which cover (unlike the ML result) the DS value,
y(6')~1.143. On the other hand, the VSS value
Y1(8')~0.571 is smaller than our estimate for y, (the
difference, however, is not large) and than
71=0.625%0.025 obtained for self-attracting trails [21].
Previous numerical results, y;=0.57(9), 0.50(5),
0.571(60), and 0.57(2) (in Refs. [16], [18], [22], and [23],
respectively) are significantly less accurate than the
present value. The same analysis for y,; has led to a
well-defined intersection point, where p~3.209
(Y11~ —0.38) is lower than the above bulk value. We
therefore calculated y,; by fixing u at its bulk value 3.212
and obtained

y11=—0.46+0.06 .

Our results satisfy the Barber scaling relation [33]. They
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lead to 2y, —v;;=1.66£0.075 which is equal, within the
error bars, to ¥y +v=1.714 (employing the DS values).
The crossover exponent ¢ can be obtained from the slope
of logG' vs logN at K, where

_ 3(G?)
G =K /{G?)
=({G*E)—(G?*)(E))/{G*)~N?, (4)

and E is the energy [32]. As in previous studies [17,21],
these graphs have been found to be strongly concave for
small N becoming more straight (but not completely) for
large N. Thus, our slopes are based on the results of G’
for the longer chains, N =180-240 at K,=0.658. We

1.1

obtain the actually equal estimates
¢(bulk)=0.5301+0.004, #(ord)=0.533+0.003 ,

with statistical errors that take into account the uncer-
tainty in K,. These values should be considered as upper
bounds of ¢ due to concavity and as expected they are
significantly smaller than the ML result, ¢ ~0.59, which
is based on shorter chains, N =70-160; however, they
are still much larger than the DS value, ¢(6’')~ =0.428.

We have also fitted the data to the function,
G'~N%1+ A/N*), where A is a constant and
x is a correction to scaling exponent. Using

x =0.4,0.5, ..., 1.2 always resulted in ¢ ~0.51 for both
models. One would expect a further reduction in the
value of ¢ for longer chains and it would be of great in-
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terest to test in future studies whether the DS value is
reached.

In summary, the results of G (unlike those for R) are
consistent for the two models of 8 SAW’s, i.e., they lead
to K, ~0.658 and to the same values of v and ¢. Our re-
sults for v are close to the DS value of v(6’) and that for
v is equal to the DS value of y(6’'), within the smallest
statistical error obtained thus far. On the other hand, the
present result for y, is larger (even though not much)
than the VSS value of y,(6'). Our results for ¢ are
significantly larger than the DS value but are smaller
than previous results obtained by ML; however, the data
show strong corrections to scaling effects and longer

chains are expected to lead to a further reduction in the
value of ¢.
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